

AICOG 2025 Mumbai 67th All India Congress of Obstetrics & Gynaecology FOGSI celebrates 75 years Poster Number: EP 280

Dr. Ankita G. Khiste (Junior Resident in Department of OBGY, GMCH Chh. Sambhajinagar),

Dr. Shrinivas Gadappa (Professor and Head of Department of OBGY, GMCH Chh. Sambhajinagar.)

ANAEMIA IN PREGNANCY: OLD DIAGNOSIS, NEW SOLUTIONS!

INTRODUCTION

Nutritional iron deficiency (ID) and iron deficiency anemia (IDA) are global health issues, affecting up to 50% of women in low-resource settings. These conditions negatively impact maternal and fetal outcomes. Intravenous Ferric

Carboxymaltose (FCM) has emerged as a safe and effective option for treating IDA in the second and third trimesters when oral iron therapy fails.

AIMS AND OBJECTIVES

To study the efficacy and safety of intravenous Ferric Carboxymaltose (1 gm) in the treatment of iron deficiency anemia during pregnancy.

METHODOLOGY

• Pregnant women visiting at 24 weeks of gestation with Hb <10g/dL

Include: Pregnant >24 weeks, Hb <10 g/dL, ferritin <30 mcg/L

• - Exclude: Other anemia, iron overload, active disease

STUDY ENROLLMENT

ELIGIBILITY ASSESSMENT

• Obtain Informed consent

BAS EIN E ASSESSE ME NT •Hemoglobin (Hb) levels.

•Serum ferritin levels.

 Peripheral smear for microcytic/hypochromic/normochromic changes

nister IV FCM

• 1 g in 250 mL NS over 15 minutes

FOLLOW-L

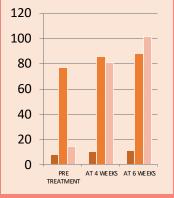
• 4 Weeks: Hb, Ferritin, MCV -

• 6 Weeks: Hb, Ferritin, MCV

DATA ANALYSIS

RESULTS

RESULTS


TIME POINT	HB(g/dL)	MCV (fL)	FERRITIN (ng/ml)
PRE TREATMENT	7.8 ± 0.6	77.3 ± 4.64	14.9 ± 6.38
AT 4 WEEKS	10.3 ± 0.54	85.5 ± 2.22	81.11 ± 10.23
AT 6 WEEKS	11.21 ± 0.56	88.26 ± 1.34	101.3 ± 6.4

DISCUSSION

- Our findings align with Breymann et al. (2017) and Qassim et al. (2020), who reported similar efficacy of FCM in improving hematological parameters.
- The increase in MCV corroborates studies by Khalafallah et al. (2016), showing improved erythropoiesis with intravenous iron.
- Compared to oral iron, FCM provides faster anemia correction and better compliance, as highlighted by Van Wyck et al. (2007).
- No adverse events were noted, reaffirming its safety in pregnancy. FCM thus remains a preferred option for moderate anemia where oral iron fails or is intolerable.

CONCLUSION

- ❖ Intravenous ferric carboxymaltose is a proven, safe and effective solution for treating iron deficiency anaemia in pregancy
- ❖ It ensures rapid improvement in haemoglobin levels, replenishment of iron stores and offers relaible alternative for patients who are unresponsive to or unable to tolerate oral iron therapy.
- ❖ It is not associated with hypersensitivity reactions and negative safety signals in vital parameters.
- ❖ It does not adversely affect neonatal outcomes (APGAR score, birth weight, mortality rates, hospitalization rates, etc.).

REFERENCES

1)Breymann C, Milman N, Mezza as A, et al. Ferric carboxymaltose vs. or al ir on in the manag ement of ir on deficiency anemia in pregnancy: An international, randomized controlled trial. Am J Obstet Gynecol. 2017;217(6):889 et 1-889 et 1

2)Qassim A, Abbasi NH, van Zanten SV. Safety anefficacy of ferric carboxymaltose in pregnancy: A systematic review. BMC Pregnancy Childbirth. 2020;2:357

3) Khalafallah AA, Dennis AE. Iron de ficiency ane mia in pregnancy and postpartum: Pathophysiology and effect of oral versus intravenous iron therapy. J Pregnancy. 2016;2016;5502016.

4)Van Wyck DB, Martens MG, Seid MH, et al. Intravenous Ferric carboxymaltose compared with oral iron in the treat ment of postpartum anemia: A randomized controlled trial. Obstet Gynecol. 2007;110(2):267-278.